1,322 research outputs found

    Learning to Identify Ambiguous and Misleading News Headlines

    Full text link
    Accuracy is one of the basic principles of journalism. However, it is increasingly hard to manage due to the diversity of news media. Some editors of online news tend to use catchy headlines which trick readers into clicking. These headlines are either ambiguous or misleading, degrading the reading experience of the audience. Thus, identifying inaccurate news headlines is a task worth studying. Previous work names these headlines "clickbaits" and mainly focus on the features extracted from the headlines, which limits the performance since the consistency between headlines and news bodies is underappreciated. In this paper, we clearly redefine the problem and identify ambiguous and misleading headlines separately. We utilize class sequential rules to exploit structure information when detecting ambiguous headlines. For the identification of misleading headlines, we extract features based on the congruence between headlines and bodies. To make use of the large unlabeled data set, we apply a co-training method and gain an increase in performance. The experiment results show the effectiveness of our methods. Then we use our classifiers to detect inaccurate headlines crawled from different sources and conduct a data analysis.Comment: Accepted by IJCAI 201

    Frequency response function-based explicit framework for dynamic identification in human-structure systems

    Get PDF
    The aim of this paper is to propose a novel theoretical framework for dynamic identification in a structure occupied by a single human. The framework enables the prediction of the dynamics of the human-structure system from the known properties of the individual system components, the identification of human body dynamics from the known dynamics of the empty structure and the human-structure system and the identification of the properties of the structure from the known dynamics of the human and the human-structure system. The novelty of the proposed framework is the provision of closed-form solutions in terms of frequency response functions obtained by curve fitting measured data. The advantages of the framework over existing methods are that there is neither need for nonlinear optimisation nor need for spatial/modal models of the empty structure and the human-structure system. In addition, the second-order perturbation method is employed to quantify the effect of uncertainties in human body dynamics on the dynamic identification of the empty structure and the human-structure system. The explicit formulation makes the method computationally efficient and straightforward to use. A series of numerical examples and experiments are provided to illustrate the working of the method

    Multi-Document Summarization via Discriminative Summary Reranking

    Full text link
    Existing multi-document summarization systems usually rely on a specific summarization model (i.e., a summarization method with a specific parameter setting) to extract summaries for different document sets with different topics. However, according to our quantitative analysis, none of the existing summarization models can always produce high-quality summaries for different document sets, and even a summarization model with good overall performance may produce low-quality summaries for some document sets. On the contrary, a baseline summarization model may produce high-quality summaries for some document sets. Based on the above observations, we treat the summaries produced by different summarization models as candidate summaries, and then explore discriminative reranking techniques to identify high-quality summaries from the candidates for difference document sets. We propose to extract a set of candidate summaries for each document set based on an ILP framework, and then leverage Ranking SVM for summary reranking. Various useful features have been developed for the reranking process, including word-level features, sentence-level features and summary-level features. Evaluation results on the benchmark DUC datasets validate the efficacy and robustness of our proposed approach

    Learning-based Single-step Quantitative Susceptibility Mapping Reconstruction Without Brain Extraction

    Full text link
    Quantitative susceptibility mapping (QSM) estimates the underlying tissue magnetic susceptibility from MRI gradient-echo phase signal and typically requires several processing steps. These steps involve phase unwrapping, brain volume extraction, background phase removal and solving an ill-posed inverse problem. The resulting susceptibility map is known to suffer from inaccuracy near the edges of the brain tissues, in part due to imperfect brain extraction, edge erosion of the brain tissue and the lack of phase measurement outside the brain. This inaccuracy has thus hindered the application of QSM for measuring the susceptibility of tissues near the brain edges, e.g., quantifying cortical layers and generating superficial venography. To address these challenges, we propose a learning-based QSM reconstruction method that directly estimates the magnetic susceptibility from total phase images without the need for brain extraction and background phase removal, referred to as autoQSM. The neural network has a modified U-net structure and is trained using QSM maps computed by a two-step QSM method. 209 healthy subjects with ages ranging from 11 to 82 years were employed for patch-wise network training. The network was validated on data dissimilar to the training data, e.g. in vivo mouse brain data and brains with lesions, which suggests that the network has generalized and learned the underlying mathematical relationship between magnetic field perturbation and magnetic susceptibility. AutoQSM was able to recover magnetic susceptibility of anatomical structures near the edges of the brain including the veins covering the cortical surface, spinal cord and nerve tracts near the mouse brain boundaries. The advantages of high-quality maps, no need for brain volume extraction and high reconstruction speed demonstrate its potential for future applications.Comment: 26 page

    A New Two-Dimensional Functional Material with Desirable Bandgap and Ultrahigh Carrier Mobility

    Full text link
    Two-dimensional (2D) semiconductors with direct and modest bandgap and ultrahigh carrier mobility are highly desired functional materials for nanoelectronic applications. Herein, we predict that monolayer CaP3 is a new 2D functional material that possesses not only a direct bandgap of 1.15 eV (based on HSE06 computation), and also a very high electron mobility up to 19930 cm2 V-1 s-1, comparable to that of monolayer phosphorene. More remarkably, contrary to the bilayer phosphorene which possesses dramatically reduced carrier mobility compared to its monolayer counterpart, CaP3 bilayer possesses even higher electron mobility (22380 cm2 V-1 s-1) than its monolayer counterpart. The bandgap of 2D CaP3 can be tuned over a wide range from 1.15 to 0.37 eV (HSE06 values) through controlling the number of stacked CaP3 layers. Besides novel electronic properties, 2D CaP3 also exhibits optical absorption over the entire visible-light range. The combined novel electronic, charge mobility, and optical properties render 2D CaP3 an exciting functional material for future nanoelectronic and optoelectronic applications
    corecore